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Abstract

Crash occurrence is a complex phenomenon, and crashes associated with pedestrians and
bicyclists are even more complex. Furthermore, pedestrian- and bicyclist-involved crashes are
typically not reported in detail in state or national crash databases. To address this issue,
developers created the Pedestrian and Bicycle Crash Analysis Tool (PBCAT). However, it is
labour-intensive to manually identify the types of pedestrian and bicycle crash from
crash-narrative reports and to classify different crash attributes from the textual content of police
reports. Therefore, there is a need for a supporting tool that can assist practitioners in using
PBCAT more efficiently and accurately. The objective of this study is to develop a framework for
applying machine-learning models to classify crash types from unstructured textual content. In
this study, the research team collected pedestrian crash-typing data from two locations in Texas.
The XGBoost model was found to be the best classifier. The high prediction power of the XGBoost
classifiers indicates that this machine-learning technique was able to classify pedestrian crash
types with the highest accuracy rate (up to 77% for training data and 72% for test data). The
findings demonstrate that advanced machine-learning models can extract underlying patterns
and trends of crash mechanisms. This provides the basis for applying machine-learning
techniques in addressing the crash typing issues associated with non-motorist crashes.
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1. Introduction

Every year in the United States, the number of
pedestrian deaths in collisions grows. In 2014,
4910 pedestrians were killed in US road accidents,
followed by 5495 and 5987, respectively, in 2015
and 2016. On average, in 2016, a pedestrian was
killed every 1.5 hours in a traffic collision [1]. These
figures are comparable with those involving bicy-
clists, with 840 fatal bicycle crashes in the USA in
2016, up from 829 in 2015. This accounted for 2.2%
of all traffic deaths during that year [2].

The development of effective countermeasures
to prevent bicyclist and pedestrian crashes is
typically inhibited by state crash databases that
include inadequate information about these types
of crash. The Pedestrian and Bicycle Crash Analy-
sis Tool (PBCAT) was developed in order to resolve
these issues. PBCAT is a stand-alone crash-typing
application [4]. With the intention of helping
local and state pedestrian and bicycle coordina-
tors, technicians and designers by addressing col-
lision issues, PBCAT permits users to construct
an information database associated with crashes
between pedestrians or bicyclists and motor vehi-
cles. This option offers more precise crash details
that explain the pre-crash actions of the involved
parties. Using this description, PBCAT users are
able to evaluate the data and construct reports,
and then choose appropriate countermeasures to
address the safety concerns [3]. In 2010, portions
of PBCAT were adopted into the National Highway
Traffic Safety Administration (NHTSA) records-
based data-collection systems, the National Auto-
motive Sampling System (NASS), the General Esti-
mates System (GES) and the Fatality Analysis
Reporting System (FARS). The legacy NASSGES
was replaced by the Crash Report Sampling Sys-
tem (CRSS) in 2016.

The traditional approach has been to estab-
lish relationships between crash frequency and
environmental conditions, traffic characteristics
and roadway geometry. Recently, more attention
has been directed toward the identification of
factors that significantly influence various crash
characteristics. The traditional data-analysis pro-
cedures use crash data structured similarly to
police reports to perform injury-severity or crash-
frequency analysis. In most police crash reports, a
textual description of the crash event is included,
but these textual crash narratives are not usually
stored electronically. The narratives are generally
unstructured or semi-structured textual data, and
considerable manual effort is required to obtain
information from them. Through the exploration

of crash narratives, the possibility of losing spe-
cific details from these textual reports is high.

This study was designed to mitigate the cur-
rent research gap by identifying pedestrian crash
types (in regard to the intention of the pedestri-
ans) with the use of machine-learning algorithms.
This study aims to evaluate the efficiency of vari-
ous machine-learning classification techniques in
classifying crash narratives obtained from seven
years of crash data in Texas. The study evaluated
three machine-learning algorithms: support vec-
tor machines (SVMs), random forests (RFs) and
XGBoost.

The structure of this paper is as follows. The
following section is the literature review. The
concepts of the modelling tools are then briefly
introduced, after which the data preparation and
model developments are demonstrated. Finally,
the results of this evaluation are described, fol-
lowed by the final conclusions and discussion.

2. Literature review

The literature review is divided into two major sec-
tions: (i) studies associated with pedestrian and
bicycle crash typing, and (ii) studies associated
with crash-narrative analysis.

2.1 Pedestrian and bicycle crash-typing analysis

Over the past 30 years, attempts made to reduce
the number of bicycle–vehicle crashes and related
deaths have been successful in Wisconsin. On this
subject, Amsden and Huber [5] analysed bicycle–
vehicle crashes in more detail and distinguished
common attributes among crashes, specifically
associated with roadway characteristics, traffic
conditions and the users involved in the crashes,
using PBCAT (version 2.0b) and a geographic infor-
mation system. Recent statistics suggest about
20% (1002 out of 5376) of all pedestrian deaths in
2015 involved pedestrians over 65 years of age.
Using joint correspondence analysis, Das et al. [6]
used three years (2014 to 2016) of US FARS infor-
mation to identify crucial relations between con-
tributing variables.

Additionally, Das et al. [7] identified important
relations between variables contributing to elderly
pedestrian crashes. Using empirical Bayes (EB)
information data mining, the authors analysed
three years (2014 to 2016) of fatal older pedes-
trian crashes from FARS. Ernst [8] suggested that
high-speed highways present the greatest threat
to pedestrians.
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Schneider and Stefanich [9] developed a new
method called the location–movement classifica-
tion method for classifying pedestrian and bicy-
cle crashes. This new method provided useful
information that was not captured by the well-
established NHTSA crash typology when applied
to a sample of 296 pedestrian and 229 bicycle
crashes reported in Wisconsin between 2011 and
2013. Berkow et al. [10] conducted a critical evalua-
tion of all types of state crash report in the USA to
determine how each type captured location data
on crashes involving bicyclists in report areas. The
findings revealed that many types of state crash
report did not provide sufficient detail for bicycle
crash identification, especially for crashes linked
to driving on sidewalks.

This section of the literature review reveals
that Schneider and Stefanich [9] and Berkow
et al. [10] used innovative approaches in improving
non-motorist crash typing. Crash-narrative anal-
ysis was not explored in previous studies asso-
ciated with pedestrian/bicyclist crash typing. The
following section provides a brief overview of the
crash-narrative analysis approaches used for dif-
ferent traffic crash-related research problems.

2.2 Crash-narrative analysis

Text-mining methods have proven to be useful by
extracting valuable information from large text-
based data sets. Text mining is used primarily
to discover trends and anomalies, identify con-
tributing factors, and develop predictive models
that can act as a reinforcing guide to solve real-
world problems [11, 12]. Previous studies have
implemented in-depth text mining for crash and
injury analysis, primarily to gain insights from
occupational crash reports [13–20], health care
reports [21–23], automobile crash reports [24–28]
and other resources [11, 12].

2.2.1 Concept chain queries and Haddon’s matrix.
Researchers have developed a special form of text
mining called concept chain queries for discov-
ering essential evidence trails across documents
that can be used to explain relationships between
given factors [12]. This text-search technique was
later developed to research the utility of crash-
narrative text analysis for producing codes for
injury mechanisms [20]. Researchers have utilized
Haddon’s matrix as the conceptual framework
to code text from work-related injury reports to
determine contributing factors of the injuries [18].
Furthermore, Haddon’s matrix provides a coded

data set and coding rules that divide fatal inci-
dents into three event phases: pre-event, event
and post-event [19].

2.2.2 Machine-learning algorithms. In crash-
narrative analysis, two major approaches are
widely used: (i) determining hidden trends from
unstructured texts, and (ii) classifying crash types
from crash-narrative reports.

Although small and less diverse data can make
it difficult to identify recurrent scenarios from
narrative text, a combined naive-fuzzy Bayesian
approach allows for greater accuracy in narra-
tive classification, and also selects the most per-
tinent data for manual review to reduce the work-
load for human coders [13, 22, 29]. Researchers
have also used DUALIST, an online interactive pro-
gram that allows novice users to organize thou-
sands of narratives efficiently (within a few min-
utes) after an hour of training [11]. There has
been further research to evaluate the effective-
ness of the Bayesian-based model in compari-
son to other machine-learning algorithms, includ-
ing neural networks [11], logistic regression mod-
els [31, 32] and SVM models [32]. These mod-
els all produce relatively accurate classifications
for the emerging causes of occupational injury.
A semi-supervised set covering machine (S3CM)
learning algorithm has also been developed to
identify coronary angiogram results and ovarian
cancer diagnoses from electronic health-record
narratives. The S3CM performance has been com-
pared with that of the transudative support vec-
tor machine (TSVM), the original fully supervised
set covering machine (SCM) and the ‘freetext
matching algorithm’ natural-language processor;
researchers found that the S3CM performed better
than the TSVM and the fully supervised SCM after
training with pre-classified test sets. Furthermore,
this model does not depend on linguistic rules, but
it does require further studies utilizing other elec-
tronic health-record data sets [33].

Recent research has applied text mining to
crash analysis in the field of transportation
research [24]. This research used a connectionist-
based model for classifying free-text crash
descriptions, and researchers used singular value
decomposition for feature extraction and network
training. Using human-classified data through
both a fuzzy Bayes and a keyword-based model,
the researchers analysed the performance and
found that the connectionist and fuzzy Bayes
model outperformed the keyword model. Another
study conducted exploratory text mining and
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EB data mining to determine the relationship
between vehicle condition and automotive safety
[25]. This study highlighted a number of vehicular
manufacturing imperfections as critical factors,
such as the ’brake system’, ’airbags’, ’seat belts’
and ’speed control’. Latent Dirichlet allocation
(LDA), a three-level hierarchical Bayesian model,
was developed to determine major recurring
crash factors from the text in Federal Railroad
Administration reports. Further analysis was
conducted using the Jigsaw text-visualization
software and the text-clustering method, and
an equivalent effect was found. A combination
of random forest, LDA and partial least squares
techniques was applied to accurately estimate the
cost of railroad crashes and identify contributing
factors [31]. Earlier researchers also used logistic
regression [28, 29, 33], clustering [33] and other
computational tools. For example, the Statistical
Analysis System and Leximancer [30, 32] were
used to determine the factors contributing to
vehicle crashes. This section of the literature
review reveals that computerized approaches
and predictive models have greater potential
to develop standardized crash-narrative text
analysis and reduce human error in crash and
injury surveillance. As predictive accuracies are
emphasized in these studies, a wide variety of
machine-learning algorithms were used to deter-
mine the best predictive method. One of the key
limitations of machine-learning models is model
interpretability. Although interpretable machine
learning (IML) has been widely used in other
research domains, none of the above-mentioned
studies used IML in their crash-narrative investi-
gation.

The review of the literature indicates that
there is a need for an in-depth investigation of
pedestrian crash-typing analysis using innovative
methods such as crash-narrative analysis. This
study therefore used three machine-learning tools
to classify crash types from pedestrian crash-
typing data from two locations in Texas. In addi-
tion, an odds-ratio analysis was performed to pro-
vide context for model interpretation.

3. Methodology

3.1 Machine-learning models

One of the central qualities of artificial intelligence
(AI) is the ability to learn. Machine learning spans
multiple AI disciplines; it is a method used to
train tools to make connections and learn patterns

in order to make precise estimations. Machine-
learning models are typically used to extract infor-
mation from raw data. There are two types of
machine learning: supervised learning and unsu-
pervised learning. A machine-learning algorithm
creates a set of rules for the computational tool
to follow in order to learn how to complete a spe-
cific task. The outcome of the machine-learning
algorithm is a machine-learning model. Models
can estimate, categorize or achieve other goals
based on the problem type. Unlike machine learn-
ing, conventional statistical modelling identifies
associations between variables using mathemati-
cal equations. Ease of interpretation is the greatest
advantage of conventional statistical modelling.
One significant drawback of this method, however,
is that predetermined assumptions must be made
at the outset.

Natural-language processing, text mining and
machine learning are useful data science tools.
These methods can be used to collect and anal-
yse data in order to discover hidden trends from
huge text corpora, like crash-narrative report
databases. This study includes longitudinal stud-
ies designed to find significant patterns in the
data that can be used to improve classification
accuracy. The research team used three different
machine-learning tools to perform the analysis:
SVMs, RFs and XGBoost. A description of these
tools is provided below. Interested readers can
consult Bishop’s book [35] for more detail.

3.1.1 Random forests. RFs are based on two main
principles: the bagging principle [36] and the ran-
dom subspace method [37]. The random subspace
method constructs a collection of decision trees
with random predictors. The general architecture
of an RF includes several steps: (i) generating clus-
ters to grow a tree by randomly selecting the
explanatory variables, (ii) using the explanatory
variables at the node of the tree to classify labels
at this node, (iii) running the out-of-bag (OOB) data
to determine misclassification, (iv) repeating the
first three steps until minimum OOB is achieved,
and (v) assigning each observation to a final class
by majority classification estimates.

3.1.2 Support vector machines. SVMs have proven
successful in various real-world learning tasks
[38]. The SVM framework is explicitly defined by
a separate hyperplane that acts as a discrimina-
tory classifier. To explain further, an algorithm
that sorts fresh examples creates an ideal hyper-
plane by considering the marked training data
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Fig. 1: Locations of pedestrian crashes in the Dallas and Austin data sets

(controlled learning). The hyperplane is a row
that separates a plane into two halves in a two-
dimensional space where each category lies on
either side [39]. The SVM framework works simi-
larly to other machine-learning algorithms: it ran-
domly selects a training set. The generalized por-
trait algorithm was introduced in 1963 by Vap-
nik and Lerner; it has a core algorithm that pro-
duces SVMs, which are statistical learning-theory
algorithms that implement the structural risk-
minimization inductive principle to achieve good
generalization on a small number of learning pat-
terns. In 1974, Vapnik created the research field of
statistical learning theory [38]. Vapnik et al. devel-
oped the current SVM framework based on a sep-
arable bipartition problem at the AT&T Bell Lab-
oratories in 1992 [39]. An SVM works by mapping
the data x into a high-dimensional feature space
F via non-linear mapping and performing linear
regression in this space. SVMs are more capable
of achieving significant gains than other current,
high-performing techniques, and they can accom-
plish many distinct learning tasks.

3.1.3 XGBoost. Extreme Gradient Boosting
(XGBoost) is a gradient-boosting library algo-
rithm based on gradient-boosted decision trees.
It is generally used for improving model accuracy

and robustness. Gradient boosting is an ensemble
technique that connects predictors sequentially
and corrects prior designs. Instead of assigning
distinct weights to the classifiers after each itera-
tion, this technique fits the fresh model to the past
prediction’s fresh residuals and then minimizes
the loss by incorporating the recent estimate
[34]. XGBoost is based on machine-learning algo-
rithms within a gradient-boosting framework. It
provides a parallel tree-boosting algorithm that
reaches the optimized point in a fast and accurate
way.

3.2 Data description

3.2.1 Data preparation. The data set of the cur-
rent study is police crash reports from two loca-
tions (the City of Dallas and Austin District) in
Texas (see Fig. 1). The Dallas data involves free-
way facilities, where pedestrians are not expected
because they are prohibited. The Austin data also
contains non-freeways where pedestrians are pro-
vided with a large number of access points. The
crash data set for Austin covers severe crashes
(K = fatal, A = incapacitating injury, B = non-
incapacitating injury) on all roadways and the cor-
responding crash-narrative report in text format
for each crash in the year 2018. Meanwhile, the
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crash data set for Dallas covers fatal crashes (K)
on freeways between the years 2008 and 2017. The
data set consists of 341 and 101 crash narratives
for Austin and Dallas, respectively. These crash
narratives create two text corpora), consisting of
30 000 and 14 000 words, respectively.

3.2.2 Descriptive statistics. In a study conducted
by Le et al. [41], crash data from the Dallas Dis-
trict of the Texas Department of Transportation
(TxDOT) was analysed; the data included 8332
pedestrian crashes (KAB) from 2008 to 2017. Of
these crashes, 4696 crashes (56%) occurred within
the City of Dallas, of which 327 crashes (7%)
occurred on freeways (access-controlled high-
ways). Of these freeway crashes, 128 (39%) were
fatal. The crashes that resulted in fatalities were
reviewed to gain a better understanding of the
fatal crashes that occurred on Dallas freeways. It
is important to note that 25 of these crash reports
were not available.

A key objective of the researchers was to deter-
mine if the pedestrians involved in the crashes
were on the freeway intentionally or not. To
achieve this, researchers carefully reviewed each
crash narrative and diagram to determine why the
pedestrian was at the crash location. The crashes
were then coded by selecting one of the plausible
reasons listed below:

(i) Changing seats in vehicle,
(ii) Commuting/moving from one place to

another,
(iii) Crossing roadway,
(iv) Fleeing police,
(v) Jumping from bridge,

(vi) Jumping from car,
(vii) Previous crash,

(viii) Retrieving items from road,
(ix) Stalled vehicle,
(x) Standing in traffic,

(xi) Standing on median, on shoulder or off
road,

(xii) Suicide,
(xiii) Taking pictures,
(xiv) Unconscious,
(xv) Walking along the sidewalk,

(xvi) Walking or lying down in traffic,
(xvii) Walking or lying down on median, on

shoulder or off road,
(xviii) Working,

(xix) Unknown/other

Some cases could fall into multiple categories;
for example, a pedestrian could have been leaving

a ‘stalled vehicle’ and also ‘standing on median,
on shoulder or off road’ when they were fatally
struck. The research team defined an ’unintended’
pedestrian as a person who was struck and (i)
associated with a vehicle at the scene (stalled
or otherwise), or (ii) a worker actively perform-
ing their duty at the scene. On the other hand,
‘intended’ indicates a person who did not meet
the criteria of ‘unintended’. For consistency, the
researchers generally coded ‘stalled vehicle’ even
though other reasons could have explained why
the pedestrian was at the crash location. Table 1
shows a list of measures or reasons and their
association with the classifications ‘intended’ and
‘unintended’ for the Dallas data set.

It is important to classify the intent of the
pedestrians on the freeway to better design poli-
cies and treatments for reducing such crashes.
As shown in Table 1, a majority of the fatal
crashes involved pedestrians intentionally walk-
ing on Dallas freeways. These results were unex-
pected because pedestrians are legally prohibited
from walking on freeways. It should be noted
that the unintended pedestrian coded as ‘flee-
ing police’ first exited his car before being fatally
struck as he was crossing the freeway. This find-
ing did not support the statewide study by Fitz-
patrick et al. [42], which found that 5% (24 of 474)
of fatal freeway pedestrian crashes were not asso-
ciated with a vehicle. But the study also found that
68% of crash reports analysed did not include the
reason why the pedestrian was at the crash loca-
tion. The researchers suspect that the Dallas sam-
ple may need to be expanded beyond Dallas and
include other crash severity types to get a truer
picture of how many pedestrians are intended vs.
unintended.

In another study, Hudson and Boya [43] col-
lected and analysed over 2500 KAB pedestrian
crashes that occurred on on- and off-system road-
ways within the TxDOT Austin District over a
seven-year period between 2011 and 2018. The
researchers aimed to identify the events prior
to the crashes in order to assign fault. They
analysed information from crash reports involv-
ing pedestrians and bicyclists from the TxDOT
Crash Records Information System (CRIS). How-
ever, CRIS does not provide the level of detail
required for this analysis, so crash narratives were
obtained from police reports (CR-3s) and entered
into PBCAT, which classified crashes by type.
Fig. 2 presents example illustrations of crash types
involving typical pedestrian actions. As shown in
the figure, the crash-type images guide the user
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Table 1: Reporting on intended vs. unintended pedestrians in fatal freeway crashes (Dallas data)

Reason Intended Unintended Undefined Total

Crossing roadway 38 – – 38
Walking or lying down in traffic 11 – – 11
Standing in traffic 6 – – 6
Walking or lying down on median, on shoulder or off road 3 – – 3
Fleeing police 2 1 – 3
Suicide 2 – – 2
Commuting/moving from one place to another 1 – – 1
Standing on median, on shoulder or off road 1 – – 1
Previous crash – 10 – 10
Retrieving items from road – 1 – 1
Stalled vehicle – 20 – 20
Unconscious – – 1 1
Working – 3 – 3
Unknown 1 – 2 3
Missing reports (blank) – – 25 25
Total 65 35 28 128

Fig. 2: Examples of the intersection crash type in PBCAT

in defining the correct circumstances. When the
mouse pointer hovers over an image, the corre-
sponding action description appears in the narra-
tion box.

The answer selected determines the follow-
up questions presented. For instance, if the user
selects ‘waiting to cross’, the next screen will ask
whether the motor vehicle was turning or not
turning at the time of the crash, or if there is insuf-
ficient information. If ‘crossing the roadway or in

the roadway’ is selected, a different set of options
will appear, as shown in Fig. 3.

In the data-collection phase of this study, the
researchers determined the cause of each crash by
compiling information from police reports, satel-
lite images, pedestrian laws, and guidelines from
the City of Austin and TxDOT. In crash-typing
research efforts, it is also important to evaluate
‘at-fault’ scenarios to determine better policies
and intervention designs. The police reports con-
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Fig. 3: Examples of the crossing/in roadway crash type in PBCAT

tained information on the crash location, con-
tributing factors, citation and crash narrative, as
well as a crash diagram. The satellite images
allowed the researchers to obtain an accurate
understanding of the street layout and roadway
facilities, as they were sometimes portrayed inac-
curately in or missing from the police reports, and
assisted with the ’at-fault’ determination for the
crash. The final decision was affected by related
laws and guidance, such as the Texas Transporta-
tion Code [44] and the guidance leaflets Pedestrian
Safety: A Guide to Applicable Laws in Austin [45] and
Pedestrian Safety and the Law [46].

The analysis results of pedestrian crashes
occurring in Austin in 2018 suggested that,
on average, motorists (45%) and pedestri-
ans (42%) were almost equally at fault (see
Table 2). Over half (59%) of crashes occurred
when pedestrians were walking/running into
the road (dash/dart-out) or crossing the road-
ways/driveways/expressways. The two most
common crash groups involved a pedestrian
crossing the roadway (non-expressway) in the
following situations: (i) when a vehicle was
not turning (29%) and (ii) when a vehicle was

turning (21%). These were followed by unusual
circumstances (16%) and dash/dart-out (9%). In
the event that a pedestrian crossed the roadway
and they were struck by a vehicle that was turn-
ing, the motorist was more likely to be at fault
(79%); if the vehicle was not turning, then the
pedestrian was more likely to be at fault (81%).
If the pedestrian dashed or darted out into the
road, the pedestrians were at fault in all cases
analysed.

3.3 Framework for crash-narrative analysis

The current study developed a framework for
solving the classification problem using crash-
narrative data. The steps are as follows:

3.3.1 Step 1: data collection. The first stage is
to retrieve the crash narratives’ digital informa-
tion. The crash reports are handwritten in many
cases and are not recorded electronically. How-
ever, the job of digitizing the crash reports has
started in many states. Louisiana, for instance,
holds an electronic database of crash-report
narratives.
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Table 2: At-fault determination based on crash group description (Austin data)

Pedestrian location Party at fault (%)

Motorist Pedestrian Both Undefined

Crossing roadway (vehicle turning) 78.6 11.2 3.1 7.1
Crossing roadway (vehicle not turning) 14.3 81.4 2.9 1.4
Unusual circumstances 58.2 23.6 18.2 0.0
Dash/dart-out 0.0 100.0 0.0 0.0
Walking along roadway 50.0 9.1 40.9 0.0
Crossing expressway 0.0 93.8 6.3 0.0
Pedestrian in roadway (circumstances unknown) 10.0 50.0 0.0 40.0
Multiple threat/trapped 0.0 87.5 12.5 0.0
Crossing driveway or alley 85.7 0.0 0.0 14.3
Other/unknown (insufficient details) 14.3 14.3 14.3 57.1
Backing vehicle 100.0 0.0 0.0 0.0
Unique midblock 60.0 20.0 20.0 0.0
Off roadway 66.7 0.0 33.3 0.0
Bus-related 50.0 50.0 0.0 0.0
Working or playing in roadway 100.0 0.0 0.0 0.0
Waiting to cross 100.0 0.0 0.0 0.0
Total 44.6 41.9 8.5 5.0

3.3.2 Step 2: data cleaning. Data cleaning can be
done with text-mining algorithms. It is possi-
ble to use available lexicons to extract redun-
dant phrases. However, domain-specific lexicons
are needed. For instance, when researching crash
reports, numerical values are sometimes vital.
Vehicle 1 and Vehicle 2 usually indicate at-fault
and not-at-fault vehicles, respectively, in a two-
vehicle crash. Removing all numerical data from
the textual data would not be a good strategy
for crash-narrative analysis. This process helps in
performing feature extraction in the form of n-
grams (i.e. sequences of n number of words) or fea-
tures (as shown in Fig. 4).

3.3.3 Step 3: predictive modelling application. Many
studies have developed innovative machine-
learning tools to solve the classification problem.
Several machine-learning models can be exam-
ined to select the best model with the lowest rate
of misclassification. This study investigated three
machine-learning models to determine the most
suitable model. The framework for using training
and test data is shown in Fig. 4.

Before applying the machine-learning algo-
rithms, the text-mining tools were applied to
reduce noise in the data set. The existence of
excess words and redundant characteristics in
narratives is one of the most widespread prob-
lems in crash-narrative analysis. Additionally, to
render the classification more robust, phrases or
sections of phrases with similar meanings were
compressed into the same word. Redundant-word
removal was performed to prepare the final data

set. Future studies could perform more robust
data cleaning to improve the precision of the
model based on domain-specific lexicons.

4. Results and discussion

4.1 Machine-learning models

The research team used three machine-learning
algorithms to determine the classification types of
pedestrian crashes from the two data sets. Textual
data from both data sets was split into a training
set (around 70%) and a testing set (around 30%)
through random sampling:

(i) Dallas (training data: 60 crashes, testing data:
30 crashes), and

(ii) Austin (training data: 205 crashes, testing data:
90 crashes)

The classes for these two databases were devel-
oped manually by an expert group. For the Dal-
las data set, manual reading of the crash reports
did not provide enough evidence to determine the
intention of the pedestrian in each crash. These
crashes were identified as ‘unknown’. The Austin
data set had similar issues. When the perfor-
mance of each model was evaluated, crash reports
classed as ‘unknown’ were excluded in the model
development. Assigning data points to the train-
ing and testing data sets was done using stratified
resampling. The models built using the training
data were then used on the testing data to evalu-
ate their performance. Table 3 presents the results
for the three models when classifying intended
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Fig. 4: Machine-learning framework for pedestrian crash-type prediction

Table 3: Confusion matrix for the predicted classes (Dallas data)

Model
Intention class

(observed)
Training (60 crashes) Testing (30 crashes)

Intended
(predicted)

Unintended
(predicted)

Intended
(predicted)

Unintended
(predicted)

SVM Intended 26 14 10 6
Unintended 8 12 6 8

RF Intended 25 15 10 6
Unintended 8 12 6 8

XGBoost Intended 29 11 12 4
Unintended 6 14 5 9

and unintended crashes from the Dallas data in
the form of a confusion matrix.

Table 4 presents the results for the models
when classifying at-fault motorist and pedestrian
crashes from the Austin data.

The measures true positive (TP) and false posi-
tive (FP) are instances of correct and incorrect clas-
sification per actual class, respectively. True neg-
ative (TN) and false negative (FN) are instances
of correct and incorrect rejection per actual class,
respectively [40]. Some of the common perfor-
mance measures are:

(i) Recall or sensitivity = T P
T P+F N = effectiveness

of positive-level identifications,
(ii) Specificity = T N

T N+F P = effectiveness of
negative-level identifications,

(iii) Precision = T P
T P+F P = class agreement of data

labels with positive labels,
(iv) Accuracy = T P+T N

T P+T N+F P+F N = overall accuracy,
(v) Balanced accuracy = T P

T P+F N × 0.5 + T N
T N+F P ×

0.5 = balanced accuracy, and
(vi) F-score = 2 ×Precision×Recall

Precision+Recall = weighted average
of recall and precision

Table 5 lists the performance measures of the
three machine-learning models for both the train-
ing and the testing data from the Dallas data

set. Based on the performance-measure values,
XGBoost showed better performance than the
other two models.

Table 6 lists the performance measures of the
three models for both the training and the test-
ing data from the Austin data set. Based on
the performance-measure values, XGBoost again
showed better performances than the other two
models. The performance of XGBoost exceeded
the performance of the algorithms for several rea-
sons, including: (i) it was able to perform feature
selection automatically and capture high-order
associations without breaking down, and (ii) it
included an additional randomization parameter
to decrease the correlation of each tree.

4.2 Log odds ratio from bigrams of the crash
narratives

The odds of the usage of word z in group ie is:

O (i )
kz = f (i )

kz /(1 − f (i )
kz ) (where f (i )

kz = y(i )
kz

n(i )
k

; y(i )
kz denotes

the Z-vector of word frequencies from documents
of class i in topic k). The odds ratio between the
two document groups is θ

(g1−g2)
kz = O (g1)

kz /O (g2)
kz . This

ratio is typically given for single words in isola-
tion or used as a measurement to rank words. As
machine-learning models are black-box in nature,
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Table 4: Confusion matrix for the predicted classes (Austin data)

Model
At-fault class

(observed)
Training (205 crashes) Testing (90 crashes)

Motorist
(predicted)

Pedestrian
(predicted)

Motorist
(predicted)

Pedestrian
(predicted)

SVM Motorist 70 35 31 16
Pedestrian 44 56 22 21

RF Motorist 68 37 30 17
Pedestrian 46 54 22 21

XGBoost Motorist 75 30 75 30
Pedestrian 39 61 39 61

Table 5: Performance measures of the machine-learning models (Dallas data)

Model Data set Sensitivity Specificity Accuracy
Balanced
accuracy Precision F-score

SVM Training 0.6500 0.6000 0.6333 0.6250 0.7647 0.7027
Testing 0.6250 0.5714 0.6000 0.5982 0.6250 0.6250

RF Training 0.6250 0.6000 0.6167 0.6125 0.7576 0.6849
Testing 0.6250 0.5714 0.6000 0.5982 0.6250 0.6250

XGBoost Training 0.7250 0.7000 0.7167 0.7125 0.8286 0.7733
Testing 0.7500 0.6429 0.7000 0.6964 0.7059 0.7273

Table 6: Performance measures of the machine-learning models (Austin data)

Model Data set Sensitivity Specificity Accuracy
Balanced
accuracy Precision F-score

SVM Training 0.6667 0.5600 0.6146 0.6133 0.6140 0.6393
Testing 0.6596 0.4884 0.5778 0.5740 0.5849 0.6200

RF Training 0.6476 0.5400 0.5951 0.5938 0.5965 0.6210
Testing 0.6383 0.4884 0.5667 0.5633 0.5769 0.6061

XGBoost Training 0.7143 0.6100 0.6634 0.6621 0.6579 0.6849
Testing 0.7021 0.6047 0.6556 0.6534 0.6600 0.6804

the research team performed odds ratio analysis
to provide some inference of the modelling algo-
rithms. This approach helped in understanding
which word or word pair was used as the identi-
fier for the classification of crash types. Fig. 5 dis-
plays the log odds ratios for the most common
bigrams (i.e. pairs of consecutive words) from the
Dallas reports of fatal pedestrian crashes. Based
on this data, the odds of a crash report associ-
ated with a motorist at fault including a vari-
ant of the phrase ‘left turn’ were 1.6 times those
of a crash report associated with a pedestrian at
fault including the same; this is shown in Fig. 6.
Bigrams such as ‘stop sign’, ‘left turn’, ‘red light’
and ‘the crosswalk’ had odds ratios greater than
1. This indicates that motorists were at fault in
intersection-related crashes due to poor judge-
ment. On the other hand, running-related crashes
can be defined as ‘pedestrian-at-fault’ crashes,
and the higher odds ratios provided evidence that
crash-narrative analysis using machine learning
was capable of classifying these crashes.

5. Conclusions

Conventional police crash reports contain inade-
quate information about the types of pedestrian
crash. The use of these conventional reports can
hinder the development of effective countermea-
sures to prevent pedestrian crashes. Pedestrian
crash typing is helpful in describing the pre-crash
scenarios to better define the sequence of events
and key contributing factors leading to pedestrian
crashes. This study used pedestrian crash-typing
data and manual classification extraction using
an expert group. The high prediction power of the
XGBoost classifiers indicates that this machine-
learning technique was able to classify pedestrian
crash types (intended vs. untended and pedes-
trian at fault vs. motorist at fault) with the highest
accuracy rate (up to 77% for the training data and
72% for the testing data). This suggests that
unknown patterns and trends can be uncovered
and examined using powerful machine-learning
models. This provides grounds for applying
quantitative modelling techniques in addressing
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Fig. 5: Log odds ratios for the bigrams from the crash narratives (Dallas data: what is the intention?)

Fig. 6: Log odds ratios for the bigrams from the crash narratives (Austin data: who is at fault?)

crash-typing issues for non-motorist crashes.
This study has demonstrated that machine-
learning tools identify crash types from crash
narrative-free text. Since crash-narrative reports
are unused in many cases, as the work of review-
ing them systematically is too labour-intensive for
many agencies and practitioners, the framework
developed in this study has the potential to be
used in tackling other crash-related classification
tasks (for example, collision type) using crash
narratives.

The current study is not without limitations.
First, the classification accuracies are not very
high. Second, the sample size of the current study
is small. Third, the results of the study are con-
ditional on the information provided in the tex-
tual content of the police reports. Future stud-
ies, with the inclusion of a larger sample, will
be able to develop a robust crash-narrative lexi-
con of stop words and trigger words (words with
high association values with crash injury). This

will help in reducing misclassification of the crash
type.

Conflict of interest statement. None declared.
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